Modulhandbuch M.Sc. Biologie
Schwerpunktmodule II

Titel des Moduls: Developmental Biology

Schwerpunktmodul II (M.Sc.) SP2-07

Modulverantwortlicher: Neubüser, Annette

Fachbereich(e): Developmental Biology

Typ: Wahlpflichtmodul

Fachsemester: 3

Moduldaure: 1 Semester, Block

ECTS: 21

Turnus: Winter semester

Workload: 630 h

Empfohlene Voraussetzung: WM-12

Zwingende Voraussetzung: OM-02, SP1-02

Verwendbarkeit: M.Sc. Biology, Major Genetics & Developmental Biology

Lehrende:

Baumeister, Ralf / Driever, Wolfgang / Driller, Katrin / Gastdozenten / Holzschuh, Jochen / Lecaudey, Virginie / Neubüser, Annette / Nitschke, Roland / Onichtchouk, Daria / Pyrowolakis, Giorgos / Schweitzer, Jörn

Veranstaltungstitel, Lehrform, ECTS, SWS, Workload [h]

<table>
<thead>
<tr>
<th>Veranstaltungstitel</th>
<th>Lehrform</th>
<th>ECTS</th>
<th>SWS</th>
<th>Workload [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Mechanism of Development</td>
<td>Lecture</td>
<td>1,5</td>
<td>1,5</td>
<td>45</td>
</tr>
<tr>
<td>From Genome to Organism: Molecular, Genetic and Cell Biology Approaches in Developmental Biology</td>
<td>Lecture</td>
<td>1</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Developmental Biology Lab Projects</td>
<td>Practical exercise</td>
<td>17</td>
<td>15</td>
<td>490</td>
</tr>
<tr>
<td>From Genes to Tissues and Organs</td>
<td>Seminar</td>
<td>1,5</td>
<td>1</td>
<td>45</td>
</tr>
</tbody>
</table>

Lernziele / Lernergebnisse

Students can
- explain molecular mechanisms of embryonic development of model organism and their relevance to human disease
- integrate knowledge of several disciplines (developmental biology, genetics, cell biology) towards comprehension of complex developmental processes
- apply state-of-the-art technologies for research on embryonic development
- analyze their experiments using statistical tools and to evaluate their results critically.
- write a laboratory project report in the format of a primary scientific publication
- define the essential findings from a primary research publication in developmental biology, and explain, interpret and discuss them together with the experimental logic in a scientific presentation

Studienleistung

- at least 80% physical presence during lectures, practical classes and seminars.
- active participation in lecture discussions, seminars and lab projects
- independent follow-up learning of the topics of lectures, seminars and lab projects.
- preparation of scientific standard protocols of laboratory projects

Prüfungsleistung & Benotung

- Protocols of two laboratory projects written in the format of a primary scientific publication. Each protocol will be graded and contribute 30% to the module grade (thus, the protocols together contribute 60% of grade)
- Oral presentation (30 minutes) and exam (30 minutes) account for 40% of the total grade of the module.

Literatur

- S.F. Gilbert: Developmental Biology 9th or 10th ed
- Scientific articles addressing selected topics (will be deposited on Illias)
Veranstaltungscode: Molecular Mechanisms of Development

Lehrform: Lecture

Modul: Schwerpunktmodul II „Developmental Biology“ SP2-07

Verwendbarkeit: Schwerpunktmodul II „Developmental Biology“

Lehrsprache: English

Teilnehmerzahl: 40

Moduldauer: 1 Semester, Block

Fachsemester: 3

Angebotshäufigkeit: winter semester only

Inhalte

Selected topics in Developmental Biology will be presented and discussed starting at the advanced text book level and taking student to the most recent research results. Topics include:

- Control of cell behavior during gastrulation - links to stem cells and cancer
- Epigenetic control of stem cell fate during development
- Zygotic genome activation and pluripotency control
- Insulin signaling in Development and stem cells
- Organizers and morphogens in tissue patterning and growth
- Shared mechanisms of embryonic development and the genesis of cancer
- Neural crest and craniofacial development
- Mechanisms of organ assembly
- Asymmetries, axes, and cell fates in vertebrates
- Sex-specific alternative splicing in Drosophila

Lehrmethoden und Medien

- Lectures using PowerPoint or Keynote presentations
- Handouts of lecture slides as PDFs on Illias server.
- Up-to-date scientific reviews for each topic provided on Illias server
- Development of schemes using chalk / board
- Discussion of concepts and open questions

Lernziele / Lernergebnisse

The students are able to

- explain molecular mechanisms of embryonic development of model organism detail (including transcriptional control, signaling mechanisms)
- explain cellular mechanisms of embryonic development (e.g. EMT, cell migration, cell death) using examples
- integrate knowledge of several disciplines (developmental biology, genetics, cell biology) towards comprehension of complex developmental processes
- draw parallels between developmental processes and human diseases using example
- explain mechanisms of stem cell fate maintenance and stem cell differentiation with examples
- evaluate animal models and experimental approaches for research into development as well as developmental diseases and cancer

Studienleistung

Independent follow-up learning of the topics of lectures using the lecture materials, text books and current scientific reviews

Prüfungsleistung & Benotung

Topics of the lectures are topics of a 30 minute oral exam at the end of the module

Literatur

- Gilbert, Developmental Biology (2013, 10th Ed)
- Primary literature and academic reviews as provided by lecturers

<table>
<thead>
<tr>
<th>SWS</th>
<th>Präsenzstudium</th>
<th>Selbststudium</th>
<th>Workload Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,5</td>
<td>22,5 h</td>
<td>22,5 h</td>
<td>45 h</td>
</tr>
</tbody>
</table>
Veranstaltungstitel: From Genome to Organism: Molecular, Genetic and Cell Biology Approaches in Developmental Biology

Lehrform: Lecture

Modul: Schwerpunktmodul II „Developmental Biology“ SP2-07

Verwendbarkeit: Schwerpunktmodul II „Developmental Biology“

Lehrsprache: English

Teilnehmerzahl: 40

Moduldoer: 1 Semester, Block

Fachsemester: 3

Angebots-häufigkeit: winter semester only

<table>
<thead>
<tr>
<th>SWS / LVS</th>
<th>Präsenzstudium</th>
<th>Selbststudium</th>
<th>Workload Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15 h</td>
<td>15 h</td>
<td>30 h</td>
</tr>
</tbody>
</table>

Inhalte

Lecture series focusing on current methodology and technologies used in the field of developmental biology. Each lecture presents state of the art in a technology area.

- Extracting biological information using the genetic toolbox of model organisms including C. elegans, Drosophila, zebrafish, mouse
- Reverse Genetics in Zebrafish
- Genetic engineering in mice: Strategies to insert targeted mutations
- Genetic Engineering in mice: conditional mutagenesis and targeted gain-of-function studies
- Observing dynamical biological processes in vivo in model organisms
- Use of advanced microscopy methods to study cell biology
- Methods to detect apoptotic cell death
- Technologies for transcriptional regulatory network analysis
- From gene regulatory networks to virtual embryo: Integrating regulatory mechanisms at the systems level

Lehrmethoden und Medien

- Lectures using PowerPoint or Keynote presentations
- Handouts of lecture slides as PDFs on Illias server
- Up-to-date scientific reviews for each topic provided on Illias server
- Development of schemes using chalk / board
- Discussion of concepts and open questions

Lernziele / Lernergebnisse

- The students are able to:
 - explain current state-of-the-art techniques combining embryology, cellular and molecular approaches in developmental biology and developmental neurosciences
 - evaluate different genetic techniques for the manipulation of signaling pathways and transcriptional control and apply appropriate techniques in experiments
 - evaluate and apply pharmacological techniques for signaling pathway manipulation

Studienleistung

- independent follow-up learning of the topics of lectures using the lecture materials, text books and current scientific reviews

Prüfungsleistung & Benotung

- Topics of the lectures are topics of a 30 minute oral exam at the end of the module

Literatur

- Gilbert, Developmental Biology (2013, 10th Ed)
- Primary literature and academic reviews as provided by lecturers
Veranstaltungstitel: Developmental Biology Lab Projects

Lehrform: Practical exercise

Modul: Schwerpunktmodul II „Developmental Biology“

Verwendbarkeit: Schwerpunktmodul II „Developmental Biology“

Lehrsprache: English

Teilnehmerzahl: 12

Moduldauer: 1 Semester, Block

Fachsemester: 3

Angebotshäufigkeit: winter semester only

SWS / LVS

<table>
<thead>
<tr>
<th>Präsenzstudium</th>
<th>Selbststudium</th>
<th>Workload Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>225 h</td>
<td>265 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>490 h</td>
</tr>
</tbody>
</table>

Inhalte

Students perform two small research projects integrated into participating research laboratories in the field of developmental biology ("lab rotations of 4 weeks each"). At least one of the lab projects should contain molecular and cellular level analysis. Students learn how to develop and plan a project, apply current experimental approaches towards solution of a scientific question, and write a report in the format of a primary scientific publication.

Lehrmethoden und Medien

Instructions for practical work by faculty. Students perform experiments independently individually or in teams of two with support by teaching staff.

Lernziele / Lernergebnisse

Students can
- develop and plan a small research project addressing a current question in developmental neurosciences
- apply state-of-the-art technologies for research on developmental questions
- analyze their experiments using statistical tools and to evaluate their results critically
- write a laboratory project report in the format of a scientific primary research publication

Studienleistung

- at least 80% physical presence during time of lab projects.
- active planning and experimental execution of lab projects.
- preparation of scientific standard protocols of laboratory projects

Prüfungsleistung & Benotung

- Protocols of two laboratory projects written in the format of a primary scientific publication. Each protocol will be graded and contribute 30% to the module grade (thus, the protocols together contribute 60% of grade)
- Oral presentation and exam: One of the two laboratory projects has to be presented in the format of a scientific presentation (30 minutes); the presentation is directly followed by a discussion and exam (also 30 minutes) in which the student has to demonstrate knowledge of the scientific background in the field of the presentation as well as command of methodology & technologies used in the field of developmental neuroscience. The grade assigned for this presentation and exam will account for 40% of the total grade of the module.

Literatur

- Gilbert, Developmental Biology (2013, 10th Ed)
- Primary literature and academic reviews as provided by the instructors