Titel des Moduls: Genetics and Developmental Biology

Orientierungsmodul (M.Sc.) OM-02

Modulverantwortlicher:
Baumeister, Ralf

Fachbereich(e):
Genetik und Molekularbiologie

Typ:
Wahlpflichtmodul

Moduldauer:
1 Semester, Block

ECTS:
9

Turnus:
Wintersemester

Workload:
270 h

Empfohlene Voraussetzung:
M.Sc. Biology, Major Genetics and Developmental Biology

Zwingende Voraussetzung:

Verwendbarkeit:
Aichinger, Ernst / Baumeister, Ralf / Driever, Wolfgang / Eimer, Stefan / Hess, Wolfgang / Laux, Thomas / Maier, Wolfgang / Neubüser, Annette / N.N. / Onichtchouk, Daria / Pyrowolakis, Giorgos / Schulze, Ekkehard / Seifert, Mark

Veranstaltungstitel

<table>
<thead>
<tr>
<th>Veranstaltungstitel</th>
<th>Lehrform</th>
<th>ECTS</th>
<th>SWS</th>
<th>Workload [h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Genetics and Development</td>
<td>Lecture</td>
<td>3</td>
<td>2</td>
<td>90 h</td>
</tr>
<tr>
<td>Classical and Molecular Genetics</td>
<td>Exercises</td>
<td>6</td>
<td>4</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Lernziele / Lernergebnisse

Students are able to:
- explain the mechanisms of prokaryotic and eukaryotic replication and transcription, can use their knowledge to design and clone prokaryotic and eukaryotic expression vectors and are able to monitor gene expression experimentally in whole animals and through quantitative PCR
- explain how genome organization and epigenetic phenomena affect development, adaptation and evolution
- describe main principles of stem cell regulation in plants and animals.
- describe major mechanisms of signal transduction in plants and animals and study and dissect signalling pathways experimentally
- explain mechanisms of pattern formation in development and of organogenesis and study such mechanisms by using transgenic animals and forward and reverse genetic methods

Studienleistung

- Regular participation in (at least 80% of) lectures and practical course
- presentation of exercise-related literaturewritten reports of the exercises

Prüfungsleistung & Benotung

Written examination at the end of the module on the contents of the lecture.

Literatur

- Watson: Molecular Biology of the Gene
- Lewin: Genes
- Gilbert: Developmental Biology
Molecular Genetics and Development

Veranstaltungstitel: Molecular Genetics and Development
Lehrform: Lecture
Modul: Orientierungsmodul „Genetics and Developmental Biology“ OM-02
Verwendbarkeit: Orientierungsmodul „Genetics and Developmental Biology“
Lehrsprache: English
Teilnehmerzahl: 50
Moduldauer: 1 Semester, Block
Fachsemester: 1
Angebotshäufigkeit: Nur im Wintersemester

<table>
<thead>
<tr>
<th>SWS / LVS</th>
<th>Präsenzstudium</th>
<th>Selbststudium</th>
<th>Workload Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>28 h</td>
<td>62 h</td>
<td>90 h</td>
</tr>
</tbody>
</table>

Inhalte
The lecture series covers general concepts of cellular and organismal control mechanisms at an advanced level including:
- DNA replication and organization
- transcription in pro- and eukaryotes, regulation of transcription
- posttranscriptional modifications
- translation
- epigenetics, maternal inheritance
- genome organization, mobile elements, organelle genomes
- homologous recombination and genome evolution
- stem cells, pattern formation, signal transduction
- molecular evolution

Lehrmethoden und Medien
lecture, discussion
media: PowerPoint presentations, chalkboard illustrations

Lernziele / Lernergebnisse
Students are able to:
- explain the mechanisms of prokaryotic and eukaryotic replication and transcription, as well as the organization of the participating protein complexes.
- describe major epigenetic phenomena like imprinting and maternal effect.
- define reverse genetics, and to understand and design reverse genetic experiments.
- explain how genome rearrangements allow organismal evolution.
- describe main principles of stem cell regulation in plants and animals.
- describe major mechanisms of signal transduction in plants.
- explain mechanisms of pattern formation in development and of organogenesis.

Studienleistung
Regular (at least 80%) participation in lecture

Prüfungsleistung & Benotung
Written examination at the end of the module on the contents of lecture

Literatur
- Watson: Molecular Biology of the Gene;
- Lewin: Genes
- Gilbert: Developmental Biology

Classical and Molecular Genetics

Veranstaltungstitel: Classical and Molecular Genetics
Lehrform: Übung
Modul: Orientierungsmodul „Genetics and Developmental Biology“ OM-02
Verwendbarkeit: Orientierungsmodul „Genetics and Developmental Biology“
Lehrsprache: deutsch / english
Teilnehmerzahl: 4x 12-13
Moduldauer: 1 Semester, Block
Fachsemester: 1
Angebotshäufigkeit: Nur im Wintersemester

<table>
<thead>
<tr>
<th>SWS / LVS</th>
<th>Präsenzstudium</th>
<th>Selbststudium</th>
<th>Workload Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>63 h</td>
<td>117 h</td>
<td>180 h</td>
</tr>
</tbody>
</table>

Inhalte
The exercises will enable students to design and perform complex experiments in genetics and developmental biology. They will learn a wide array of up-to-date technologies including:
- molecular cloning
- RNA isolation from animal tissue
- reverse transcription
- quantitative and semi-quantitative PCR (including primer design)
- Mendelian and molecular genetics including phenotypic analysis
- imaging from light to electron microscopy
- interaction studies
- protein expression
- cellular signaling studies during organogenesis in model systems
- use of model organisms
- use of model organisms as disease models.
- bioinformatical analysis of DNA sequences and proteins

Lehrmethoden
supervised practical work in groups of two.
media: chalkboard/whiteboard, PowerPoint presentations, shared access to bioinformatics tools

Lernziele / Lernergebnisse
The students are able to:
- design and conduct basic molecular cloning experiments
- explore the possible functions of genes and proteins bioinformatically
- dissect genetic hierarchies and epistatic relationships
- explain how genotype and phenotype are linked and can be explored by forward and reverse genetic analysis
- follow experimentally how cell signaling events (Notch, EGF, etc.) are used by an organism to generate pattern and organs
- use transgenic animals to visualize and study animal development
- visualize gene transcription and translation in whole animals
- monitor gene expression through quantitative PCR

Studienleistung
Regular (at least 80%) participation in the exercises
written reports of the exercises
presentation of a representative publication from an area covered by the exercises

Prüfungsleistung & Benotung
None
<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Watson: Molecular Biology of the Gene;</td>
</tr>
<tr>
<td>• Lewin: Genes</td>
</tr>
<tr>
<td>• Gilbert: Developmental Biology</td>
</tr>
</tbody>
</table>